[GAP Forum] polycyclic representation

Joshua Edward Hunt joshuahunt at math.ku.dk
Tue Sep 18 15:00:14 BST 2018


Dear Bill & Forum,

I suspect the issue here is that GAP defines Comm to be a^-1*b^-1*a*b, not a*b*a^-1*b^-1. At least, if you use the definition for Comm that you gave in your Magma code, then GAP identifies H as (16,7). I would assume it's the same issue in your other example.

Best wishes,
Josh
________________________________________
From: Bill Allombert [Bill.Allombert at math.u-bordeaux.fr]
Sent: 18 September 2018 15:42
To: GAP Forum
Subject: [GAP Forum] polycyclic representation

Dear GAP Forum,

I wrote some number theory program that incidentely produces a
polycyclic presentation for a group of order 128.
After exporting to GAP syntax, GAP tells me the order is 64 instead.
After exporting to Magma syntax, Magma tells me the group is
SmallGroup(128,924) as expected.

Is my GAP syntax below correct for a polycyclic presentation
(with all relatives orders equal to 2) ?

F:=FreeGroup(7);;
H:=F/[(F.1)^-2,
      (F.2)^-2*F.1,
      (F.3)^-2,
      (F.4)^-2*F.1*F.2*F.3,
      (F.5)^-2*F.1*F.2*F.3*F.4,
      (F.6)^-2*F.2*F.4,
      (F.7)^-2*F.1*F.2,
      Comm(F.1,F.2),Comm(F.1,F.3),Comm(F.1,F.4),Comm(F.1,F.5),Comm(F.1,F.6),Comm(F.1,F.7),
      Comm(F.2,F.3),Comm(F.2,F.4),Comm(F.2,F.5),Comm(F.2,F.6)*F.1,Comm(F.2,F.7),
      Comm(F.3,F.4),Comm(F.3,F.5),Comm(F.3,F.6)*F.1,Comm(F.3,F.7)*F.1,
      Comm(F.4,F.5),Comm(F.4,F.6)*F.1,Comm(F.4,F.7)*F.1*F.2*F.3,
      Comm(F.5,F.6)*F.1*F.2,Comm(F.5,F.7)*F.1*F.2*F.4,
      Comm(F.6,F.7)*F.1*F.2*F.3*F.4];
Size(H);

I found a smaller example where GAP and Magma disagree:
GAP:

F:=FreeGroup(4);;
H:=F/[(F.1)^-2,(F.2)^-2*F.1,(F.3)^-2,(F.4)^-2*F.2,Comm(F.1,F.2),Comm(F.1,F.3),Comm(F.1,F.4),Comm(F.2,F.3)*F.1,Comm(F.2,F.4),Comm(F.3,F.4)*F.2];
IdGroup(H);
[ 16, 8 ]

Magma:

Comm := function(a,b) return a*b*a^-1*b^-1; end function;
F:=FreeGroup(4);;
H:=quo<F|(F.1)^-2,(F.2)^-2*F.1,(F.3)^-2,(F.4)^-2*F.2,Comm( F.1,F.2),Comm(F.1,F.3),Comm(F.1,F.4),Comm(F.2,F.3)*F.1,Comm(F.2,F.4),Comm(F.3, F.4)*F.2>;
IdentifyGroup(H);
<16, 7>

(I tried both GAP 4.8.6 and 4.9.3)

Cheers,
Bill

_______________________________________________
Forum mailing list
Forum at gap-system.org
https://mail.gap-system.org/mailman/listinfo/forum



More information about the Forum mailing list