[GAP Forum] polycyclic representation
Bill Allombert
Bill.Allombert at math.u-bordeaux.fr
Tue Sep 18 14:42:44 BST 2018
Dear GAP Forum,
I wrote some number theory program that incidentely produces a
polycyclic presentation for a group of order 128.
After exporting to GAP syntax, GAP tells me the order is 64 instead.
After exporting to Magma syntax, Magma tells me the group is
SmallGroup(128,924) as expected.
Is my GAP syntax below correct for a polycyclic presentation
(with all relatives orders equal to 2) ?
F:=FreeGroup(7);;
H:=F/[(F.1)^-2,
(F.2)^-2*F.1,
(F.3)^-2,
(F.4)^-2*F.1*F.2*F.3,
(F.5)^-2*F.1*F.2*F.3*F.4,
(F.6)^-2*F.2*F.4,
(F.7)^-2*F.1*F.2,
Comm(F.1,F.2),Comm(F.1,F.3),Comm(F.1,F.4),Comm(F.1,F.5),Comm(F.1,F.6),Comm(F.1,F.7),
Comm(F.2,F.3),Comm(F.2,F.4),Comm(F.2,F.5),Comm(F.2,F.6)*F.1,Comm(F.2,F.7),
Comm(F.3,F.4),Comm(F.3,F.5),Comm(F.3,F.6)*F.1,Comm(F.3,F.7)*F.1,
Comm(F.4,F.5),Comm(F.4,F.6)*F.1,Comm(F.4,F.7)*F.1*F.2*F.3,
Comm(F.5,F.6)*F.1*F.2,Comm(F.5,F.7)*F.1*F.2*F.4,
Comm(F.6,F.7)*F.1*F.2*F.3*F.4];
Size(H);
I found a smaller example where GAP and Magma disagree:
GAP:
F:=FreeGroup(4);;
H:=F/[(F.1)^-2,(F.2)^-2*F.1,(F.3)^-2,(F.4)^-2*F.2,Comm(F.1,F.2),Comm(F.1,F.3),Comm(F.1,F.4),Comm(F.2,F.3)*F.1,Comm(F.2,F.4),Comm(F.3,F.4)*F.2];
IdGroup(H);
[ 16, 8 ]
Magma:
Comm := function(a,b) return a*b*a^-1*b^-1; end function;
F:=FreeGroup(4);;
H:=quo<F|(F.1)^-2,(F.2)^-2*F.1,(F.3)^-2,(F.4)^-2*F.2,Comm( F.1,F.2),Comm(F.1,F.3),Comm(F.1,F.4),Comm(F.2,F.3)*F.1,Comm(F.2,F.4),Comm(F.3, F.4)*F.2>;
IdentifyGroup(H);
<16, 7>
(I tried both GAP 4.8.6 and 4.9.3)
Cheers,
Bill
More information about the Forum
mailing list