[GAP Forum] Atoms of a boolean algebra of sets
Johannes Hahn
johannes.hahn at uni-jena.de
Tue Feb 26 11:49:50 GMT 2019
Thank you very much, Stefan and Jean. That solves my problem.
Best wishes
Johannes.
Von: Stefan Kohl <sk239 at st-andrews.ac.uk>
Gesendet: Dienstag, 26. Februar 2019 01:07
An: Johannes Hahn <johannes.hahn at uni-jena.de>; forum at gap-system.org
Betreff: Re: [GAP Forum] Atoms of a boolean algebra of sets
Dear Johannes,
As to your second question: I think it should be straightforward to adapt RCWA's internal function
'CommonRefinementOfPartitionsOfZ_NC' for this purpose. That function computes the common refinement of a set of partitions of the integers into finitely many residue classes:
#############################################################################
##
#F CommonRefinementOfPartitionsOfZ_NC( <partitions> ) . . special case R = Z
##
InstallGlobalFunction( CommonRefinementOfPartitionsOfZ_NC,
function ( partitions )
local table, partition, mods, res, m,
pow, mj, r, i, j, k;
mods := List(partitions,P->List(P,Mod));
res := List(partitions,P->List(P,Residues));
m := Lcm(Concatenation(mods));
table := List([1..m],i->0);
pow := 1;
for i in [1..Length(partitions)] do
for j in [1..Length(partitions[i])] do
mj := mods[i][j];
for r in res[i][j] do
for k in [r,r+mj..r+(Int(m/mj)-1)*mj] do
table[k+1] := table[k+1] + pow;
od;
od;
pow := pow + pow;
od;
od;
partition := EquivalenceClasses([1..m],r->table[r]);
return Set(List(partition,r->ResidueClassUnion(Integers,m,r-1)));
end );
Hope this helps,
Stefan
_____
From: Johannes Hahn < <mailto:johannes.hahn at uni-jena.de> johannes.hahn at uni-jena.de>
Sent: Tuesday, February 26, 2019 12:01:15 AM
To: <mailto:forum at gap-system.org> forum at gap-system.org
Subject: [GAP Forum] Atoms of a boolean algebra of sets
Dear forum,
Let’s say a have a list of subsets of a fixed finite set $\Omega$. Is there a nice and easy way to find the atoms of the Boolean algebra generated by these sets? Of course, I could implement this by hand, but it seems to me that something like this probably already exists and I simply had bad luck finding it.
A related question: Let’s say I have a list of partitions of $\Omega$ (i.e. a set of pairwise disjoint subsets that cover all of $\Omega$). Is there a nice and easy way to find the common refinement of all these partitions?
Best wishes
Johannes Hahn.
_______________________________________________
Forum mailing list
<mailto:Forum at gap-system.org> Forum at gap-system.org
<https://mail.gap-system.org/mailman/listinfo/forum> https://mail.gap-system.org/mailman/listinfo/forum
More information about the Forum
mailing list