[GAP Forum] LAGUNA package
Alexander Konovalov
alexander.konovalov at st-andrews.ac.uk
Sun Mar 5 19:19:08 GMT 2017
Dear Surinder,
No, in this case, LAGUNA can only speed up some calculations
only for those units of this group algebra whose support
consists only of elements whose order is a power of 3.
However, for such small example you can actually do something in GAP:
* construct group algebra
gap> F:=GF(3);
GF(3)
gap> G:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> FG:=GroupRing(F,G);
<algebra-with-one over GF(3), with 2 generators>
* calculate its unit group
gap> U:=Units(FG);
<group with 5 generators>
gap> time;
12484
gap> Size(U);
324
* find normalised units
gap> nu:=Filtered(U,x -> IsOne(Augmentation(x)));;
gap> Length(nu);
162
* construct normalised unit group
gap> V:=Group(nu);
<group with 162 generators>
* construct and explore an isomorphic permutation group
gap> phi:=IsomorphismPermGroup(V);
<action isomorphism>
gap> H:=Image(phi);
<permutation group of size 162 with 162 generators>
gap> IdGroup(H);
[ 162, 41 ]
gap> StructureDescription(H);
"C3 x (((C3 x C3) : C3) : C2)"
* find its minimal generating set and map it back to the group algebra
gap> mgs:=MinimalGeneratingSet(H);;
gap> List(mgs,u->PreImagesRepresentative(phi,u));
[ (Z(3))*()+(Z(3)^0)*(2,3)+(Z(3))*(1,2)+(Z(3)^0)*(1,2,3)+(Z(3)^0)*(1,3,2),
(Z(3))*()+(Z(3))*(2,3)+(Z(3))*(1,2)+(Z(3))*(1,2,3)+(Z(3))*(1,3,2), (Z(3)^0)*()+(Z(3)^0)*(1,2)+(Z(3))*
(1,2,3)+(Z(3)^0)*(1,3,2)+(Z(3))*(1,3) ]
Hope this helps
Alexander
> On 4 Mar 2017, at 06:38, Surinder Kaur <surinder.kaur at iitrpr.ac.in> wrote:
>
> Using LAGUNA package we can calculate the Normalized unit group of a
> p-modular group algebra but can we find it if group algebra is not
> p-modular like of (GF(3)S3) where S3 is symmetric group of order 6.
>
>
> --
> *Regards*
> *Surinder Kaur*
> *Research scholar *
> *Department of Mathematics *
> *IIT Ropar*
More information about the Forum
mailing list