[GAP Forum] LAGUNA package

Alexander Konovalov alexander.konovalov at st-andrews.ac.uk
Sun Mar 5 19:19:08 GMT 2017


Dear Surinder,

No, in this case, LAGUNA can only speed up some calculations 
only for those units of this group algebra whose support 
consists only of elements whose order is a power of 3. 

However, for such small example you can actually do something in GAP:

* construct group algebra

gap> F:=GF(3);
GF(3)
gap> G:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> FG:=GroupRing(F,G);
<algebra-with-one over GF(3), with 2 generators>

* calculate its unit group

gap> U:=Units(FG);
<group with 5 generators>
gap> time;
12484
gap> Size(U);
324

* find normalised units

gap> nu:=Filtered(U,x -> IsOne(Augmentation(x)));;
gap> Length(nu);
162

* construct normalised unit group

gap> V:=Group(nu);
<group with 162 generators>

* construct and explore an isomorphic permutation group

gap> phi:=IsomorphismPermGroup(V);
<action isomorphism>
gap> H:=Image(phi);
<permutation group of size 162 with 162 generators>
gap> IdGroup(H);
[ 162, 41 ]
gap> StructureDescription(H);
"C3 x (((C3 x C3) : C3) : C2)"

* find its minimal generating set and map it back to the group algebra

gap> mgs:=MinimalGeneratingSet(H);;
gap> List(mgs,u->PreImagesRepresentative(phi,u));
[ (Z(3))*()+(Z(3)^0)*(2,3)+(Z(3))*(1,2)+(Z(3)^0)*(1,2,3)+(Z(3)^0)*(1,3,2), 
  (Z(3))*()+(Z(3))*(2,3)+(Z(3))*(1,2)+(Z(3))*(1,2,3)+(Z(3))*(1,3,2), (Z(3)^0)*()+(Z(3)^0)*(1,2)+(Z(3))*
    (1,2,3)+(Z(3)^0)*(1,3,2)+(Z(3))*(1,3) ]


Hope this helps
Alexander

> On 4 Mar 2017, at 06:38, Surinder Kaur <surinder.kaur at iitrpr.ac.in> wrote:
> 
> Using LAGUNA package we can calculate the Normalized unit group of a
> p-modular group algebra but can we find it if group algebra is not
> p-modular like of (GF(3)S3) where S3 is symmetric group of order 6.
> 
> 
> -- 
> *Regards*
> *Surinder Kaur*
> *Research scholar  *
> *Department of Mathematics *
> *IIT Ropar*




More information about the Forum mailing list