[GAP Forum] ConjugacyClasses
    Stefan Kohl 
    stefan at mcs.st-and.ac.uk
       
    Thu Feb  7 15:47:46 GMT 2013
    
    
  
On Thu, February 7, 2013 3:34 pm, Stefan Witzel wrote:
> can anyone explain the following behavior to me (saying that PSL(3,2) has to distinct
> conjugacy classes that are conjugate)?
>
> vec1:=[1,0,0]*Z(2)^0;;
> sl:=SL(3,2);;
> orb:=Orbit(sl,vec1,OnLines);;
> act:=ActionHomomorphism(sl,orb,OnLines);;
> psl:=Image(act);;
> ConjugacyClasses(psl);
>
> [ ()^G, (3,4)(6,7)^G, (2,3,5,4)(6,7)^G, (2,3,6)(4,7,5)^G, (1,2,3,4,7,5,6)^G,
> (1,2,3,5,6,7,4)^G ]
>
> g:=Representative(ConjugacyClasses(psl)[5]);;
> h:=Representative(ConjugacyClasses(psl)[6]);;
> c:=(2,6,4)(3,5,7);;
> c*g^(-1)*c^(-1)=h;
>
> true
>
> IsSubgroup(psl,Group(c));
>
> true
The point is that the 6th conjugacy class in the list consists of the
inverses of the elements of the 5th conjugacy class (in particular the
elements in these classes are not conjugate to their inverses):
gap> ccl := ConjugacyClasses(psl);
[ ()^G, (3,4)(6,7)^G, (2,3,5,4)(6,7)^G, (2,3,6)(4,7,5)^G, (1,2,3,4,7,5,6)^G,
  (1,2,3,5,6,7,4)^G ]
gap> Set(AsList(ccl[6])) = Set(List(AsList(ccl[5]),g->g^-1));
true
gap> IsConjugate(psl,Representative(ccl[5]),Representative(ccl[6]));
false
gap> IsConjugate(psl,Representative(ccl[5]),Representative(ccl[6])^-1);
true
Hope this helps,
    Stefan Kohl
    
    
More information about the Forum
mailing list